Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
نویسندگان
چکیده
منابع مشابه
Data Assimilation to Extract Soil Moisture Information from SMAP Observations
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural network (NN) and physically-based SMAP soil moisture retrievals were assimilated into the National Aeronautics and Space Administration (NASA) Catchment model over the contiguous United States for April 2015 to March 2017. By constructio...
متن کاملSetting Up a Sentinel 1 Based Soil Moisture - Data Assimilation System for Flash Flood Risk Mitigation
The objective of this research was to evaluate the potentialities of an advanced SM-DA system based on the assimilation of synthetic aperture radar (SAR) observations derived from Sentinel 1 (S1) acquisitions. A time-continuous, spatially-distributed, physically-based hydrological model was used: Continuum (Silvestro et al., 2013). The latter is currently exploited for civil protection activiti...
متن کاملSoil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document SMAP L2 & L3 Radar Soil Moisture (Active) Data Products
متن کامل
Recent Advances on Soil Moisture Data Assimilation
This study reviews recent progress on soil moisture data assimilation. Data assimilation is a process of merging observations with a system dynamic model to provide an improved estimate of the states of the environment. The application of data assimilation in hydrology is relatively new, however, rapid progress has been made in the last decade or so with the available remotely sensed soil moist...
متن کاملVariational Gravity Data Assimilation to Improve Soil Moisture Prediction in a Land Surface Model
Accurate prediction of soil moisture in a land surface model (LSM) is critical in improving land surface and atmosphere interactions in the atmospheric general circulation models used in numerical weather prediction and global climate models. Gravity is a relatively new source of remotely sensed data, available since the launch of the twin Gravity Recovery And Climate Experiment (GRACE) satelli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Research Letters
سال: 2017
ISSN: 0094-8276
DOI: 10.1002/2017gl073904